Factoring trinomials MATH style

(The common method in Kehillah school!)

Assume a trinomial of the form

$$
a X^{2}+b X+c
$$

Create the following table following the directions below it:

M	A	T	H
$a \cdot c$	b	Try the various factors of $a \cdot c$ that sum up to b	\odot

1. Put under M (Multiply) the product $a \cdot c$
2. Put under A (Add) the value of b
3. Under T (Tries), put the various factor-pairs of the result in M, and try to see if their sum adds up to A.
4. When you find an appropriate pair, mark a smiley face in H (Happy) !
5. Rewrite the trinomial, by writing the middle term as the sum of two terms, and factor by grouping appropriate terms.

Examples:
I. $3 x^{2}+8 x+4$

M	A	T	H
$3 \cdot 4=12$	8	$1,12-\mathrm{no}$	\odot

$$
3 x^{2}+8 x+4=3 x^{2}+6 x+2 x+4=3 x(x+2)+2(x+2)=(3 x+2)(x+2)
$$

II. $2 x^{2}+x-15$

M	A	T	H
-30	1	$-6,5-$ no	0

$$
2 x^{2}+6 x-5 x-15=2 x(x+3)-5(x+3)=(2 x-5)(x+3)
$$

III. $x^{2}-2 x-24$

M	A	T	H
-24	-2	$-2,12-$ no $-6,4-$ YES	\odot

$$
x^{2}-6 x+4 x-24=x(x-6)+4(x-6)=(x+4)(x-6)
$$

Let's try in the case of binomial (though we know the answer already!)
IV. $4 x^{2}-9=4 x^{2}+0 x-9$

M	A	T	H
-36	0	$-6,6-$ YES	\odot

$$
4 x^{2}-6 x+6 x-9=2 x(2 x-3)+3(2 x-3)=(2 x-3)(2 x+3)
$$

V. $-2 x^{2}-x+6$

M	A	T	H
-12	-1	$-4,3-$ YES	\odot

$$
-2 x^{2}-4 x+3 x+6=-2 x(x+2)+3(x+2)=(3-2 x)(x+2)
$$

$$
==\text { END === }
$$

