Factoring trinomials MATH style

(The common method in Kehillah school!)

Assume a trinomial of the form

$$aX^2 + bX + c$$

Create the following table following the directions below it:

М	А	Т	Н
a · c	b	Try the various factors of $a \cdot c$ that sum up to b	٢

- 1. Put under M (Multiply) the product $a \cdot c$
- 2. Put under A (Add) the value of *b*
- 3. Under T (Tries), put the various factor-pairs of the result in M, and try to see if their sum adds up to A.
- 4. When you find an appropriate pair, mark a smiley face in H (Happy) !
- 5. Rewrite the trinomial, by writing the middle term as the sum of two terms, and factor by grouping appropriate terms.

Examples:

I. $3x^2 + 8x + 4$

М	А	Т	Н
$3 \cdot 4 = 12$	8	1,12 – no 2,6 - YES	٢

$$3x^{2} + 8x + 4 = 3x^{2} + 6x + 2x + 4 = 3x(x + 2) + 2(x + 2) = (3x + 2)(x + 2)$$

II. $2x^2 + x - 15$

М	А	Т	Н
-30	1	-6,5 – no 5,6 - YES	٢

$$2x^{2} + 6x - 5x - 15 = 2x(x + 3) - 5(x + 3) = (2x - 5)(x + 3)$$

III. $x^2 - 2x - 24$

М	А	Т	Н
-24	-2	-2,12 – no -6,4 - YES	٢

$$x^{2}-6x+4x-24 = x(x-6)+4(x-6) = (x+4)(x-6)$$

Let's try in the case of binomial (though we know the answer already!) IV. $4x^2 - 9 = 4x^2 + 0x - 9$

М	А	Т	Н
-36	0	-6,6 - YES	٢

$$4x^{2} - 6x + 6x - 9 = 2x(2x - 3) + 3(2x - 3) = (2x - 3)(2x + 3)$$

V.
$$-2x^2 - x + 6$$

М	А	Т	Н
-12	-1	-4,3 – YES	٢

$$-2x^{2} - 4x + 3x + 6 = -2x(x + 2) + 3(x + 2) = (3 - 2x)(x + 2)$$

== END ===